Date:

Finding the Least Common Multiple of Two Numbers

Instructions: For each pair of numbers, fill in a row of the multiples chart by multiplying by $1,2,3,4$, etc. As soon as you find a common multiple, circle it. The circled number is the Least Common Multiple (or LCM). You do not need to fill up the whole table.

12 and 3

3 2 and 10

54 and 5

76 and 8

$9 \quad 12$ and 15

23 and 4

4. 8 and 10

6. 4 and 6

83 and 5

106 and 21

Date:

Finding the Least Common Denominator (LCD)

Instructions: Change these 'un-like’ fractions into 'like’ fractions using the LCD method. Use the multiples table to help find the LCM of the bottom numbers.

1

$$
\frac{3}{3} \times \frac{3}{4} \quad \frac{1}{6} \times \frac{2}{2}
$$

4 and 6

$$
\frac{9}{12} \quad \frac{2}{12}
$$

2
$\begin{array}{ll}\frac{1}{2} & \frac{7}{10}\end{array}$
$-\times \frac{1}{2} \quad \frac{7}{10} \times-$

$$
\begin{array}{r}
\frac{5}{6} \quad \frac{3}{8} \\
-\times \frac{5}{6} \quad \frac{3}{8} \times-
\end{array}
$$

4

10 and 8

$$
-\times \frac{3}{10} \quad \frac{3}{8} \times-
$$

Date:

Adding \& Subtracting Fractions by the LCD Method

Instructions: Add or subtract these 'un-like' fractions. Start by using the LCD Method to turn them into 'like' fractions. You do not need to simplify your answers.

$$
\begin{aligned}
& 1 \quad \frac{2}{3}+\frac{7}{9} \\
& \frac{3}{3} \times \frac{2}{3}+\frac{7}{9} \times \frac{1}{1} \\
& \frac{6}{9}+\frac{7}{9}=\frac{13}{9} \\
& 2 \quad \frac{4}{9}+\frac{1}{12} \\
& -\times \frac{4}{9}+\frac{1}{12} \times- \\
& 9 \text { and } 12 \\
& -\quad+\quad=- \\
& 3 \\
& \frac{7}{12}-\frac{4}{15} \\
& -\times \frac{7}{12}-\frac{4}{15} \times- \\
& 12 \text { and } 15 \\
& \text { - - } \quad=\text { - }
\end{aligned}
$$

4) $\quad \frac{3}{6}-\frac{3}{14}$

$$
-\times \frac{3}{6}-\frac{3}{14} \times-
$$

6 and 14

$$
-\quad-\quad=-
$$

When 'Un-Like' Denominators are Multiples

Instructions: Add these 'un-like' fractions using the LCD method. In each problem, one bottom number is a multiple of the other. That means you won't need a table to find the LCM because the bigger bottom number is the LCM. You do not need to simplify your answers.

$$
\begin{array}{r}
\frac{1}{2}+\frac{5}{6} \\
\frac{3}{3} \times \frac{1}{2}+\frac{5}{6} \\
\frac{3}{6}+\frac{5}{6}=\frac{8}{6}
\end{array}
$$

3

$$
\begin{array}{r}
\frac{2}{3}+\frac{2}{9} \\
-\times \frac{2}{3}+\frac{2}{9} \\
- \\
--=-
\end{array}
$$

$5 \quad \frac{3}{4}+\frac{5}{16}$

$$
-\times \frac{3}{4}+\frac{5}{16}
$$

$$
-+-=
$$

$$
7 \quad \frac{4}{3}+\frac{8}{15}
$$

$$
-\times \frac{4}{3}+\frac{8}{15}
$$

$$
-+-=-
$$

2 $\frac{1}{8}+\frac{3}{4}$
$\frac{1}{8}+\frac{3}{4} \times-$

$$
-+-=-
$$

(4) $\frac{5}{12}+\frac{2}{6}$
$\frac{5}{12}+\frac{2}{6} \times-$

$$
-+-=-
$$

6 $\frac{9}{25}+\frac{3}{5}$
$\frac{9}{25}+\frac{3}{5} \times-$ $-+-=-$

8 $\frac{5}{21}+\frac{2}{3}$
$\frac{5}{21}+\frac{2}{3} \times-$

Date:

Un-Guided Practice with the LCD Method

Instructions: Add or subtract these 'un-like' fractions using the LCD method you learned in the video. Show your work and you do not need to simplify your answers.

$$
\begin{array}{r}
1 \frac{2}{3}+\frac{1}{6} \\
\frac{2}{2} \times \frac{2}{3}+\frac{1}{6} \\
\frac{4}{6}+\frac{1}{6}=\frac{5}{6}
\end{array}
$$

$3 \quad \frac{15}{24}+\frac{5}{8}$

$$
\frac{15}{24}+\frac{5}{8}
$$

4

$$
\frac{9}{10}-\frac{1}{5}
$$

2

$$
\frac{7}{12}-\frac{1}{6}
$$

$$
\frac{3}{7}+\frac{5}{14}
$$

6 $\quad \frac{3}{7}+\frac{5}{14}$
$8 \quad \frac{4}{6}-\frac{3}{8}$

Date:

Un-Guided Practice with the LCD Method - Set 2

Instructions: Add or subtract these 'un-like' fractions using the LCD method you learned in the video. Show your work and you do not need to simplify your answers.
$1 \quad \frac{1}{2}+\frac{3}{14}$
$\frac{7}{7} \times \frac{1}{2}+\frac{3}{14}$

$$
\frac{7}{14}+\frac{3}{14}=\frac{10}{14}
$$

3 $\frac{7}{16}-\frac{1}{4}$

$$
\frac{7}{16}-\frac{1}{4}
$$

5 $\frac{4}{5}+\frac{2}{3}$
6 $\frac{5}{6}-\frac{4}{30}$
$7 \quad \frac{5}{9}-\frac{10}{27}$
4. $\frac{8}{11}-\frac{5}{22}$

2 $\quad \frac{16}{30}+\frac{1}{10}$

